6,354 research outputs found

    Energy conversion in the coronal plasma

    Get PDF
    Solar and stellar X-ray emission are the observed waste products of the interplay between magnetic fields and the motion of stellar plasma. Theoretical understanding of the process of coronal heating is of utmost importance, since the high temperature is what defines the corona in the first place. Most of the research described deals with the aspects of the several rivalling theories for coronal heating. The rest of the papers deal with processes of energy conversion related to flares

    A coordinate free description of magnetohydrostatic equilibria

    Get PDF
    The question what geometrical restrictions are imposed on static magnetic fields by the magnetohydrostatic (MHS) equation is addressed. The general mathematical problem is therefore to determine the solutions of the MHS equations in the corona subject to an arbitrary normal component of the magnetic field at the boundary and arbitrary connectivity. What constraints the MHS equations impose on the geometry of the solutions, expressed in metric tensors, will be determined

    An approximate self-consistent theory of the magnetic field of fluted penumbrae

    Get PDF
    A self-consistent mathematical description of the magnetic field of fluted sunspot penumbrae is presented. This description is based on an expansion of the nonlinear force-free magnetohydrostatic equations written in cylindrical coordinates. The lowest order solutions are mathematically equivalent to laminated force-free equilibria in Cartesian geometry. The lowest order solutions have no toroidal component of the magnetic field and the magnetic pressure does not vary with azimuth but the solutions allow arbitrary variations of the magnetic field components with azimuth. Explicit solutions are presented which have a realistic radial profile of the magnetic field strength and reproduce the basic features of the observations.Comment: 8 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    Multithermal Analysis of a CDS Coronal Loop

    Full text link
    The observations from 1998 April 20 taken with the Coronal Diagnostics Spectrometer CDS on SOHO of a coronal loop on the limb have shown that the plasma was multi-thermal along each line of sight investigated, both before and after background subtraction. The latter result relied on Emission Measure Loci plots, but in this Letter, we used a forward folding technique to produce Differential Emission Measure curves. We also calculate DEM-weighted temperatures for the chosen pixels and find a gradient in temperature along the loop as a function of height that is not compatible with the flat profiles reported by numerous authors for loops observed with EIT on SOHO and TRACE. We also find discrepancies in excess of the mathematical expectation between some of the observed and predicted CDS line intensities. We demonstrate that these differences result from well-known limitations in our knowledge of the atomic data and are to be expected. We further show that the precision of the DEM is limited by the intrinsic width of the ion emissivity functions that are used to calculate the DEM. Hence we conclude that peaks and valleys in the DEM, while in principle not impossible, cannot be confirmed from the data.Comment: 12 pages, 3 figures, Accepted by ApJ Letter

    Uncertainty reconciles complementarity with joint measurability

    Full text link
    The fundamental principles of complementarity and uncertainty are shown to be related to the possibility of joint unsharp measurements of pairs of noncommuting quantum observables. A new joint measurement scheme for complementary observables is proposed. The measured observables are represented as positive operator valued measures (POVMs), whose intrinsic fuzziness parameters are found to satisfy an intriguing pay-off relation reflecting the complementarity. At the same time, this relation represents an instance of a Heisenberg uncertainty relation for measurement imprecisions. A model-independent consideration show that this uncertainty relation is logically connected with the joint measurability of the POVMs in question.Comment: 4 pages, RevTeX. Title of previous version: "Complementarity and uncertainty - entangled in joint path-interference measurements". This new version focuses on the "measurement uncertainty relation" and its role, disentangling this issue from the special context of path interference duality. See also http://www.vjquantuminfo.org (October 2003

    Solar Coronal Structures and Stray Light in TRACE

    Full text link
    Using the 2004 Venus transit of the Sun to constrain a semi-empirical point-spread function for the TRACE EUV solar telescope, we have measured the effect of stray light in that telescope. We find that 43% of 171A EUV light that enters TRACE is scattered, either through diffraction off the entrance filter grid or through other nonspecular effects. We carry this result forward, via known-PSF deconvolution of TRACE images, to identify its effect on analysis of TRACE data. Known-PSF deconvolution by this derived PSF greatly reduces the effect of visible haze in the TRACE 171A images, enhances bright features, and reveals that the smooth background component of the corona is considerably less bright (and hence much more rarefied) than commonly supposed. Deconvolution reveals that some prior conlclusions about the Sun appear to have been based on stray light in the images. In particular, the diffuse background "quiet corona" becomes consistent with hydrostatic support of the coronal plasma; feature contrast is greatly increased, possibly affecting derived parameters such as the form of the coronal heating function; and essentially all existing differential emission measure studies of small features appear to be affected by contamination from nearby features. We speculate on further implications of stray light for interpretation of EUV images from TRACE and similar instruments, and advocate deconvolution as a standard tool for image analysis with future instruments such as SDO/AIA.Comment: Accepted by APJ; v2 reformatted to single-column format for online readabilit

    No elliptic islands for the universal area-preserving map

    Full text link
    A renormalization approach has been used in \cite{EKW1} and \cite{EKW2} to prove the existence of a \textit{universal area-preserving map}, a map with hyperbolic orbits of all binary periods. The existence of a horseshoe, with positive Hausdorff dimension, in its domain was demonstrated in \cite{GJ1}. In this paper the coexistence problem is studied, and a computer-aided proof is given that no elliptic islands with period less than 20 exist in the domain. It is also shown that less than 1.5% of the measure of the domain consists of elliptic islands. This is proven by showing that the measure of initial conditions that escape to infinity is at least 98.5% of the measure of the domain, and we conjecture that the escaping set has full measure. This is highly unexpected, since generically it is believed that for conservative systems hyperbolicity and ellipticity coexist

    The Haroche-Ramsey experiment as a generalized measurement

    Get PDF
    A number of atomic beam experiments, related to the Ramsey experiment and a recent experiment by Brune et al., are studied with respect to the question of complementarity. Three different procedures for obtaining information on the state of the incoming atom are compared. Positive operator-valued measures are explicitly calculated. It is demonstrated that, in principle, it is possible to choose the experimental arrangement so as to admit an interpretation as a joint non-ideal measurement yielding interference and ``which-way'' information. Comparison of the different measurements gives insight into the question of which information is provided by a (generalized) quantum mechanical measurement. For this purpose the subspaces of Hilbert-Schmidt space, spanned by the operators of the POVM, are determined for different measurement arrangements and different values of the parameters.Comment: REVTeX, 22 pages, 5 figure

    Exact Results for the Kuramoto Model with a Bimodal Frequency Distribution

    Full text link
    We analyze a large system of globally coupled phase oscillators whose natural frequencies are bimodally distributed. The dynamics of this system has been the subject of long-standing interest. In 1984 Kuramoto proposed several conjectures about its behavior; ten years later, Crawford obtained the first analytical results by means of a local center manifold calculation. Nevertheless, many questions have remained open, especially about the possibility of global bifurcations. Here we derive the system's complete stability diagram for the special case where the bimodal distribution consists of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one of three states: incoherence, where all the oscillators are desynchronized; partial synchrony, where a macroscopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state, where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented for the bifurcation boundaries between these states. Similar results are also obtained for the case in which the bimodal distribution is given by the sum of two Gaussians.Comment: 28 pages, 7 figures; submitted to Phys. Rev. E Added comment
    • …
    corecore